Improving aging and creep resistance in a dilute Al–Sc alloy by microalloying with Si, Zr and Er

نویسندگان

  • N. Q. Vo
  • D. N. Seidman
چکیده

Nanosized precipitates in an Al–0.06Sc at.% alloy containing various microalloying additions were studied, with the goal of developing cost-effective aluminum alloys for high-temperature applications, using micro-hardness, electrical conductivity and atom-probe tomography measurements. Substituting 0.005 at.% Er for the more expensive Sc maintains high ambient-temperature strength, and dramatically improves the high-temperature creep resistance, as anticipated from the increase in lattice parameter mismatch between the aAl(fcc) matrix and the coherent L12-ordered Al3(Sc,Zr,Er) precipitates. A concentration of the slow-diffuser Zr as low as 0.02 at.% is sufficient to provide coarsening resistance at 400 C (an homologous temperature of 0.72) for up to 66 days by forming a Zr-enriched outer shell encapsulating the precipitates. Finally, adding 0.05 at.% Si enhances ambient-temperature strength by increasing the number density of precipitates, while decreasing the homogenization and peak-aging heat-treatment times, which is caused by the Si atoms accelerating the Er and Sc diffusion kinetics. Si-containing alloys are also cost effective, owing to the existence of Si in commercial purity Al. But addition of Si reduces the precipitate coarsening resistance: the magnitude of this effect is, however, determined by the Si concentration. 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Er additions on ambient and high-temperature strength of precipitation-strengthened Al–Zr–Sc–Si alloys

The effect of substituting 0.01 at.% Er for Sc in an Al–0.06Zr–0.06Sc–0.04Si (at.%) alloy subjected to a two-stage aging treatment (4 h/300 C and 8 h/425 C) is assessed to determine the viability of dilute Al–Si–Zr–Sc–Er alloys for creep applications. Upon aging, coherent, 2–3 nm radius, L12-ordered, trialuminide precipitates are created, consisting of an Erand Sc-enriched core and a Zr-enriche...

متن کامل

Microstructure and mechanical properties of a precipitation-strengthened Al-Zr-Sc-Er-Si alloy with a very small Sc content

The precipitation hardening behavior of an Al-0.08Zr-0.014Sc-0.008Er-0.10Si (at.%) alloy was investigated utilizing microhardness, electrical conductivity, atom-probe tomography (APT), and compressive creepmeasurements. This new composition, with a Sc:Zr atomic ratio of less than 1:5 represents a significant reduction of the alloy's cost when compared to the more usual Al-0.06Sc-0.02Zr based al...

متن کامل

Role of silicon in accelerating the nucleation of Al3(Sc,Zr) precipitates in dilute Al–Sc–Zr alloys

The effects of adding 0.02 or 0.06 at.% Si to Al–0.06Sc–0.06Zr (at.%) are studied to determine the impact of Si on accelerating Al3(Sc,Zr) precipitation kinetics in dilute Al–Sc-based alloys. Precipitation in the 0.06 at.% Si alloy, measured by microhardness and atom-probe tomography (APT), is accelerated for aging times <4 h at 275 and 300 C, compared with the 0.02 at.% Si alloy. Experimental ...

متن کامل

Mechanical Properties and Microstructure of Al – Sc with Rare - Earth Element or Al 2 O 3 Additions

Mechanical Properties and Microstructure of Al–Sc with Rare-Earth Element or Al2O3 Additions Richard Albert Karnesky, Jr. Aluminum alloys strengthened with coherent (L12), nanosize Al3Sc precipitates are structural materials that have outstanding strength at ambient and elevated temperatures. They are creep resistant at 300 ◦C and exhibit a threshold stress, below which creep is not measurable....

متن کامل

Coarsening resistance at 400 C of precipitation-strengthened Al–Zr–Sc–Er alloys

The effect of substituting 0.01 or 0.02 at.% Er for Sc in an Al–0.06 Zr–0.06 Sc at.% alloy was studied to develop cost-effective high-temperature aluminum alloys for aerospace and automotive applications. Spheroidal, coherent, L12-ordered Al3(Sc, Zr, Er) precipitates with a structure consisting of an Er-enriched core surrounded by a Sc-enriched inner shell and a Zr-enriched outer shell (core/do...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013